今天给各位分享MVL的知识,其中也会对mv拉片进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
首先需要了解,角动量(angular momentum) 在物理学中是和物体到原点的位移和动量相关的物理量。它表征质点矢径扫过面积速度的大小,或刚体定轴转动的剧烈程度。
角动量公式:L = mvl 的证明过程如下:
∵ L = Jω (J 是转动惯量,ω(欧米伽)是角速度)
而J=ml^2,(l为半径)将J展开代入原式得:
∴ L=mωl^2
∵ v=ωl
∴ L=m(ωr)l=mvl,原式得证。
扩展资料:
一、角动量是一个“量”,其衍生出来的定律是“角动量守恒定律”。
1、角动量守恒定律定义:
对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。
2、角动量守恒定律内容:
是物理学的普遍定律之一。反映质点和质点系围绕一点或一轴运动的普遍规律。
如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。这就是说,对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。
二、与角动量相应的学科是动力学
1、动力学简介:
动力学是理论力学的一个分支学科,它主要研究作用于物体的力与物体运动的关系。动力学的研究对象是运动速度远小于光速的宏观物体。动力学是物理学和天文学的基础,也是许多工程学科的基础。许多数学上的进展也常与解决动力学问题有关,所以数学家对动力学有着浓厚的兴趣。
2、动力学基础:
动力学的研究以牛顿运动定律为基础;牛顿运动定律的建立则以实验为依据。动力学是牛顿力学或经典力学的一部分,但自20世纪以来,动力学又常被人们理解为侧重于工程技术应用方面的一个力学分支。
参考资料来源:百度百科-角动量守恒定律
参考资料来源:百度百科-动力学
mvl是角动量公式,角动量L的大小为L=rpsinφ(φ为r与p的夹角),方向垂直于位矢r和动量p所组成的平面,指向是由r经小于180°的角转到p的右手螺旋前进的方向。
如果作用在质点上的外力对某给定点O的力矩(r×F)为零,则质点对O的角动量在运动过程中保持不变,这就叫做质点的角动量守恒定律。
另:某段时间内若质点所受合力对原点力矩M不为零,但是M的某分量(对某坐标轴力矩)总是零,则该段时间内质点对原点角动量的该分量守恒,或质点对该轴角动量守恒。
MVL--Multiple Virtual Line (多虚拟数字用户线)
MVL是Paradyne公司开发的低成本DSL传输技术,属于对称DSL技术的一种. * 利用一对双绞线;
* 安装简便,价格低廉;
* 功耗低,可以进行高密度安装;
* 利用与ISDN技术相同的频率段,对同一电缆中的其他信号干扰非常小;
* 支持语音传输,在用户端无需语音分离器;
* 支持同一条线路上同时连接多至8个MVL用户设备,动态分配带宽;
* 上/下行共享速率可达768Kbps;
* 传输距离可达7公里。
mvl表示子弹射入木棒前系统的初始角动量。
这个等式用到了角动量守恒定律
等号左边表示初始角动量,右边表示子弹射入木棒后系统的末态角动量
关于MVL和mv拉片的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
版权声明:本文内容由互联网用户自发贡献,本站不拥有所有权,不承担相关法律责任。如果发现本站有涉嫌抄袭的内容,欢迎发送邮件至举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。
标签: #MVL
相关文章