本篇文章给大家谈谈信息熵值,以及对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
所谓信息熵,是一个数学上颇为抽象的概念,在这里不妨把信息熵理解成某种特定信息的出现概率。而信息熵和热力学熵是紧密相关的。
根据Charles H. Bennett对Maxwell's Demon的重新解释,对信息的销毁是一个不可逆过程,所以销毁信息是符合热力学第二定律的。而产生信息,则是为系统引入负(热力学)熵的过程。所以信息熵的符号与热力学熵应该是相反的。
一般而言,当一种信息出现概率更高的时候,表明它被传播得更广泛,或者说,被引用的程度更高。可以认为,从信息传播的角度来看,信息熵可以表示信息的价值。这样子就有一个衡量信息价值高低的标准,可以做出关于知识流通问题的更多推论。
扩展资料
应用:
信息如果持续保持混乱,没有系统化,那么结果就是信息死亡,信息熵是解决信息处理的问题,如信息的数量变化,产生的冗余信息统计,从熵增定律来看,信息从A到B的传递,类似于能量守恒定律,总量是不变的,但会产生冗余。
人们经常会对一条信息跟帖、转发和收藏,这些行为就是在信息传递过程中的动能,结果是信息冗余越来越多,反而信息本身被关注越来越少,所以信息其实就是一个本身不断降维和冗余不断升维的过程,当冗余超过信息本身时,这条信息已经不重要了,或者从熵的角度定义为信息熵死。
参考资料来源:百度百科-信息熵
信息熵的计算公式:H(x) = E[I(xi)] = E[ log(2,1/P(xi)) ] = -∑P(xi)log(2,P(xi)) (i=1,2,..n)。
其中,x表示随机变量,与之相对应的是所有可能输出的集合,定义为符号集,随机变量的输出用x表示。P(x)表示输出概率函数。变量的不确定性越大,熵也就越大,把它搞清楚所需要的信息量也就越大。
信息熵是数学方法和语言文字学的结合,基本计算公式是未H = - LOG2(P)。其中,H 表示信息熵,P 表示某种语言文字的字符出现的概率,LOG2是以二为底的对数,用的是二进制,因而,信息熵的单位是比特(BIT,即二进制的0和1)。信息熵值就是信息熵的数值。
扩展资料:
信息熵的相关介绍:
一个信源发送出什么符号是不确定的,衡量它可以根据其出现的概率来度量。概率大,出现机会多,不确定性小;反之不确定性就大。不确定性函数f是概率P的减函数;两个独立符号所产生的不确定性应等于各自不确定性之和。
人们常常说信息很多,或者信息较少,但却很难说清楚信息到底有多少。比如一本五十万字的中文书到底有多少信息量。
直到1948年,香农提出了“信息熵”的概念,才解决了对信息的量化度量问题。信息熵这个词是C.E.香农从热力学中借用过来的。热力学中的热熵是表示分子状态混乱程度的物理量。香农用信息熵的概念来描述信源的不确定度。信息论之父克劳德·艾尔伍德·香农第一次用数学语言阐明了概率与信息冗余度的关系。
参考资料来源:百度百科-信息熵
参考资料来源:百度百科-信息熵值
信息是个很抽象的概念。人们常常说信息很多,或者信息较少,但却很难说清楚信息到底有多少。比如一本五十万字的中文书到底有多少信息量。
直到1948年,香农提出了“信息熵”的概念,才解决了对信息的量化度量问题。信息熵这个词是C.E.Shannon(香农)从热力学中借用过来的。热力学中的热熵是表示分子状态混乱程度的物理量。香农用信息熵的概念来描述信源的不确定度。
信息论之父克劳德·艾尔伍德·香农第一次用数学语言阐明了概率与信息冗余度的关系。
中文名
信息熵
外文名
informationentropy
提出者
C. E. Shannon
时间
1948 年
借鉴
热力学的概念
快速
导航
基本内容信息含义
理论提出
信息论之父 C. E. Shannon 在 1948 年发表的论文“通信的数学理论( A Mathematical Theory of Communication )”中指出,任何信息都存在冗余,冗余大小与信息中每个符号(数字、字母或单词)的出现概率或者说不确定性有关。
Shannon 借鉴了热力学的概念,把信息中排除了冗余后的平均信息量称为“信息熵”,并给出了计算信息熵的数学表达式。
基本内容
通常,一个信源发送出什么符号是不确定的,衡量它可以根据其出现的概率来度量。概率大,出现机会多,不确定性小;反之不确定性就大。
不确定性函数f是概率P的减函数;两个独立符号所产生的不确定性应等于各自不确定性之和,即f(P1,P2)=f(P1)+f(P2),这称为可加性。同时满足这两个条件的函数f是对数函数,即
。
在信源中,考虑的不是某一单个符号发生的不确定性,而是要考虑这个信源所有可能发生情况的平均不确定性。若信源符号有n种取值:U1…Ui…Un,对应概率为:P1…Pi…Pn,且各种符号的出现彼此独立。这时,信源的平均不确定性应当为单个符号不确定性-logPi的统计平均值(E),可称为信息熵,即
信息熵值的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于、信息熵值的信息别忘了在本站进行查找喔。
版权声明:本文内容由互联网用户自发贡献,本站不拥有所有权,不承担相关法律责任。如果发现本站有涉嫌抄袭的内容,欢迎发送邮件至举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。
标签: #信息熵值
相关文章